Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan.
نویسندگان
چکیده
The back-propagation (BP) artificial neural network (ANN) is applied to forecast the variation of the quality of groundwater in the blackfoot disease area in Taiwan. Three types of BP ANN models were established to evaluate their learning performance. Model A included five concentration parameters as input variables for seawater intrusion and three concentration parameters as input variables for arsenic pollutant, respectively, whereas models B and C used only one concentration parameter for each. Furthermore, model C used seasonal data from two seasons to train the ANN, whereas models A and C used only data from one season. The results indicate that model C outperforms models A and B. Model C can describe complex variation of groundwater quality and be used to perform reliable forecasting. Moreover, the number of hidden nodes does not significantly influence the performance of the ANN model in training or testing.
منابع مشابه
Integration of artificial neural network and geographic information system applications in simulating groundwater quality
Background: Although experiments on water quality are time consuming and expensive, models are often employed as supplement to simulate water quality. Artificial neural network (ANN) is an efficient tool in hydrologic studies, yet it cannot predetermine its results in the forms of maps and geo-referenced data. Methods: In this study, ANN was applied to simulate groundwater quality ...
متن کاملGroundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran
In this paper, the Artificial Neural Network (ANN) approach is applied for forecasting groundwater level fluctuation in Aghili plain,southwest Iran. An optimal design is completed for the two hidden layers with four different algorithms: gradient descent withmomentum (GDM), levenberg marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). Rain,evaporation, relative...
متن کاملApplication of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine
In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...
متن کاملGroundwater Level Forecasting Using Wavelet and Kriging
In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...
متن کاملGroundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran
Groundwater quality management is the most important issue in many arid and semi-arid countries, including Iran.Artificial neural network (ANN) has an extensive range of applications in water resources management. In this study,artificial neural network was developed using MATLAB R2013 software package, and Cl, EC, SO4 and NO3 qualitativeparameters were estimated and compared with the measured ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2004